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An algorithm is developed in order to solve the stochastic Liouville equation describing energy
transfer between a donor-donor pair of reorienting chromophores. The algorithm requires the fluctuat-
ing part of the Liouville equation in the form of trajectories. In this particular case the molecular reori-
entation of the chromophores was simulated by means of a Brownian dynamic simulation technique
where each of the two molecules are allowed to undergo a restricted rotational diffusion in a cone poten-
tial. Numerical results are presented for the correlation function { x(¢)x(0)), representing the probabili-
ty that the initially excited donor still is excited at a later time 7. Results are given for the weak or
Forster regime and for a simple case in the strong or slow motion regime. The time resolved fluores-
cence anisotropy r(¢) is also calculated for different molecular reorientational rates and cone potentials.

PACS number(s): 87.15.—v

I. INTRODUCTION

An electronically excited molecule may be relaxed due
to energy transfer to another molecule. For large separa-
tion this transfer is dominated by a dipole-dipole interac-
tion between the two molecules. This energy transfer
mechanism is used extensively for interpretation of pho-
tophysical studies of molecular systems active in pho-
tosynthesis. The Forster theory [1] describes energy
transfer or radiationless transport of excitons between
pairs of immobile molecules (donors and acceptors) by
virtue of intermolecular electron transition dipole-dipole
interaction. Forster showed that the electronic energy
transfer rate constant for weakly coupled pairs of chro-
mophores is given by W(r,Q),
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and thus is proportional to the inverse sixth power of the

intermolecular distance r between the pair of fluorescent

molecules. The square of the orientation function is «, the

lifetime of the excitation is 7, and R, is the so-called

Forster radius [1]. The dependence on orientations of the

two transition moments relative to the vector r joining
the two molecules is given by
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with ¢ ,p=(¢,—¢p). Here, pu, represent a molecular
fixed unit vector along the transition dipole of molecule
Y-
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The angle dependence in () becomes a random func-
tion in time as a consequence of reorientation of the two
chromophores. Forster’s expressions presuppose that
only dipole-dipole coupling is active between the mole-
cules and that dynamics effects due to molecular reorien-
tation are absent. The effects of molecular dynamics may
be included in the description of energy transfer through
the basic stochastic Liouville equation (SLE) [2]. The
SLE formalism then treats the energy transfer process
within the same conceptual framework as other relaxa-
tion processes. Within a simple two-site dynamic model,
equations were derived including the effect of molecular
reorientation and analogous to the master equation of
Foster’s theory [2]. Forster’s master equation was de-
rived from the stochastic Liouville equation by a simple
perturbation treatment determining precisely under what
conditions the master equation can be used [2].

A theoretical framework for treating energy transfer
between pairs of chromophores undergoing free or re-
stricted molecular motion on the same time scale as the
energy transfer process has not yet been given in the
literature. We believe that the SLE approach combined
with Brownian dynamic simulation (BD) presented in this
work is a very useful approach and sufficiently flexible to
meet the problem of describing energy transfer between
pairs of chromophores attached to proteins or other ma-
cromolecules. An alternative approach to the STE ap-
proach is to use the kinetic master equation where molec-
ular dynamics effects may be included by introducing ex-
plicit trajectories of Brownian dynamic simulation into
kX(Q) of the Forster transition rate constant [3].

The system of interest in this work is schematically
shown in Fig. 1 and consists of a pair of chromophores,
for instance, that are covalent bound at fixed intermolec-
ular distance r,; in a protein or some other macro-
molecule. The chromophore pair may be incorporated at
different distances r ,;, thus making it possible to tune
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FIG. 1. A schematic representation of the geometrical
configuration of a donor-donor pair of chromphores with one
excited donor (D*). The donors are reorienting independently
from each other within a cone potential defined by the semian-
gle 6,.

the coupling strength and accordingly the rate of the en-
ergy transfer mechanism. In this work we present nu-
merical results for cases where the dipole-dipole coupling
strength has been varied from “strong” to the weak per-
turbation regime, with ‘“‘strong” coupling or the “slow-
motion” regime using the usage from electron spin reso-
nance (ESR) and paramagnetic nuclear spin relaxation
theory. The slow-motion regime is defined by the rela-
tion HDD7p,;, > 1 where HPP is the interaction strength
and 7p, the characteristic correlation time of the fluc-
tuating dipole-dipole coupling.

Chromophore molecules that are covalent bound to a
macromolecule are expected to reorient in a restrictive
way. In this work we have modeled the chromophore re-
orientational dynamics as a restricted Brownan diffusion
motion in a cone potential (wobbling in a cone). The
cone potential V,, is defined by the semiangle 6,,,

0 for 0<0<86,

V. w for 6=6, . 3

con

The outline of this paper is as follows: In Sec. II the SLE
approach is reviewed. The stochastic fluctuation of the
dipole-dipole coupling is determined explicitly by the
Brownian dynamic simulation technique. In Sec. III the
numerical approach is presented and a new algorithm
developed that solves the stochastic Liouville equation
effectively. We apply the SLE to energy transfer when
the two molecules are allowed to rotate in identical cone
potentials. In Sec. IV numerical results are presented for
the correlation function describing the probability that
the initially excited chromophore sill is excited at a later
time t. We discuss both the weak perturbation limit and
the strong coupled regime where oscillations of the exci-
tation between the chromophores are pronounced. The
fluorescence anisotropy is also calculated for different dy-
namics cases. Finally, we summarize the main results of
this paper.

II. ENERGY TRANSFER BETWEEN A PAIR
OF DIPOLE-DIPOLE COUPLED MOLECULES

A. The stochastic Liouville equation of motion

The equation of motion for the electron density opera-
tor, describing energy transfer between two dipole-dipole
coupled chromophores, was given by Agranovich and
Galanin [4] for an immobile pair. In the superoperator
formalism the stochastic Liouville equation of motion

was used in [2]. The state of the combined system is de-
scribed as a direct product p ,®p, of two electron densi-
ty operators p , and pp. The Liouville formalism is used
for the energy transfer between two molecules, an excited
donor D and a ground-state acceptor 4. For each mole-
cule we assume that the first excited state |1) and the
ground state |0) are relevant for the problem. The time
evolution of the density matrix follows from the Liouville
equation of motion:

%pAngz_i{LA+LD+LAD(t)}PA®PD ) 4)
where the Liouville superoperators L ;, and L specify
the isolated chromophores and L ,;, is the Liouville su-
peroperator generated by the intermolecular dipole-
dipole interaction H?(t) [3]. The coupling L ,, origi-
nates from the dipole-dipole interaction whose Hamil-
tonian HPP is given by
DD _ “A:u'Dl

3 «(Q), (5)
4megr 4p

where k(Q) is defined in Eq. (2) and p 4 and pup are the
transition dipole operators, r 4p the distance between the
donor and the acceptor, and g, the permittivity of vacu-
um. The Liouville operator L ,;, is obtained from H?P as
a derivation superoperator [5]. For the special case of
fixed intermolecular distance r 4, the stochastic fluctuat-
ing factor x(Q)(¢) is due to internal rotation diffusion of
the two chromophores. No local field approximations
have been introduced in Eq. (5). For real systems one
may introduce the refractive index to consider local
effects but still assume that the only reorientation depen-
dence is in k(Q)(2).

The density matrices p , and p, have only four matrix
elements, respectively. We express them in terms of the
basis operators

pi=l10)¢0l, pi=[1)(1],
pi=10)<1l, pi=[1)¢0l,

where j = A or D and |1) and |0) denote the excited and
ground states, respectively. We may transform to a set of
(left) eigenoperators representing the equilibrium state
(p;=10){0|+[1){1]) and the nonequilibrium state
(p;=I11)(1]) under the assumption that o;=E,
—E,;>>kT. We now have four eigenoperators of the
electronic part of the Liouville iL;, with eigenvalues (in
angular frequency units)

(6)

N

A3=—za>j— T j
2,j

where 7; is the lifetime of the excited state of molecule j
without energy transfer, o, =E,;—E,;. 1/T,; is the
width of the assumed Lorentzian absorption peak at the
resonance frequency o;.

The primary observable is the time evolution of the
combined state of an initially excited donor and a nonex-

cited acceptor state. In terms of the density operators it
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refers to the time evolution of [pi{p?](¢) given that the in-
itial condition is [p{'p?](0)=1; the other density matrix
elements are equal to zero.

We assume that the coupling L ,, is weak relative to
the excitation energy. The relevant states are then

xi=pip? » X2=pipl, X:=pipi. Xe=pip?, @

since the total excited state p;p? and the total ground
state p{ip? do not couple to ¥, to second order in L .
Out of the original 16X 16 Liouville L matrix, we have
now isolated a 4X4 submatrix [2,4] that contains the
physically interesting couplings. The stochastic Liouville
equation of motion in matrix form reads

d _ .
dtx(t)— iL(t)x(2) , 9)

where Y is the density vector of the four elements in Eq.
(8). Since the stochastic Liouville matrix is written in the
eigenoperators of the separate electronic systems, it has
only the coupling off-diagonal and the combined eigen-
values of two electronic systems on the diagonal:

A 0 H —H

0 B —-H H

H —H iC o |
—H H 0 iC*

A=—1/r,, B=—1/1p, (10)

C=—1/T,»—ib, =‘/#§FK ,

where the off-diagonal term H is given in Eq. (5) with
F=p up/[4meor3]. The stochastic time dependence is
due to the random function k(). C includes the overlap
1/T4p=1/T 4—1/Tp. In the strong coupled limit we
cannot simply define a vibrational state independent
“Forster radius” since the coupling between different vi-
brational states of the chromophore pair is dependent on
the initial and final vibrational level. Equation 10 needs
to be generalized to include vibrational transitions and
their vibrational relaxation rates. In this work we leave
this problem and focus on how to treat the dynamics of
the Liouville matrix in Eq. (10).

Two physically interesting correlation functions are
(x1(Dlxi(t0)) and {x,(£)|x,(ty)), representing an en-
semble average of the probability that the initial excited
chromophore is excited at time ¢t —t; and the probability
that the chromophore intitially not excited has the exci-
tation at time t —t,, respectively. In the numerical cal-
culations we confine ourselves to one of the energy
transfer paths where the acceptor is the same species as
the donor (donor-donor); we then have 7, =7, and §=0
by symmetry.

B. The model of molecular reorientation

We explicitly incorporate the molecular reorientation
processes into the SLE. In this work we have used the
cone model in order to describe the molecular reorienta-
tion of the two chromphores. More specifically, the elec-

tronic transition moment of each chromophore is de-
scribed by two Euler angles (6,¢) (i = 4, B) restricted by
the cone potential given in Eq. (3).

The dynamics of a chromophore is described by the
diffusion equation

19 pig,4,00=8,P6,,0),
D ot
i 11
1 9 |.,9 1 9
= — - + 4 .
Ba=3ne 20 1930 | T sinte 3¢

The cone potential V, leads to the boundary condition

=0. (12)

6=6,

0
30 P(6,¢,1)

As an initial condition, we took P uniform over the angu-
lar space 0<0<6,and 0< ¢ <27

2 0% . -1
Py= [fo J, sin(0)dods | . (13)

The model of the chromophores is characterized by the
lifetime of the excitation, 7p, the line broadening overlap
T 4p, the transition dipole moments 1, and the distance
between the chromophores 7 ,. The molecular reorien-
tational dynamic restricted in the cones for each chromo-
phores is characterized by the diffusion coefficient D (the
same for both chromphores) and the semiangle 6,
describing the cone potential. We explicitly incorporate
the molecular reorientational processes into the SLE
simulating the energy transfer [cf. Eq. (9)] for different
dynamics and coupling strengths.

III. NUMERICAL APPROACH

A. The stochastic time dependence of x(Q)

In order to solve Eq. (9) with a stochastic time-
dependent Liouville matrix, the random off-diagonal ele-
ments H must be available in the form of explicit trajec-
tories. The algorithm described in Sec. III C is quite gen-
eral and independent of the method used to generate the
fluctuation terms in the stochastic Liouville equation. In
our case we have used Brownin dynamic simulation tech-
niques and the model of force-free diffusion in a cone
which, as has been shown, is very useful in many different
model calculations of restricted molecular diffusion, for
instance, of small sections of a protein or the local dy-
namics of a segment of an amphiphile alkyl] tail in liquid
crystalline lamellar phases. In a recent work [6] we
developed and tested three different algorithms to simu-
late restricted diffusion in a cone. Instead of using the
Langevin equations for the Euler angles which have a
singularity due to 1/sin?6 of the angular part of the La-
placian operator (11) and in the corresponding Langevin
equations, we used the Langevin equations in Cartesian
coordinates and the algorithm presented in detail in Ap-
pendix A. In order to obtain the stochastic time depen-
dence of «({)), we simulate two independent trajectories
moving inside a cone defined by a semiangle 6,
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B. The statistical characteristics of the fluctuating
dipole-dipole coupling (x)

The uniform initial condition (13) and Markovian na-
ture of the diffusion process of Eq. (11) make the random
process k(6 ,0p¢ ,p) stationary. The time-independent
probability distribution function P(6,¢) is shown in Figs.
2(a) and 2(b) as a function of different semiangles 6, of the
cone potential. P(8,¢) is substantially non-Gaussian and
displays a very strong angle dependence. For the isotro-
pic case (6,=180°) we see that here are equally large
amounts of configuration of the two transition dipole mo-
ment vectors giving the value of « between —2 and 2.
However, when we introduce restriction in the angular
space of each cone, the distribution function loses the
symmetry around k=0. For instance, when the transi-
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tion dipoles are restricted to move in the same hemi-
sphere (6,=90), the asymmetry becomes pronounced
and positive values become more probable with a peak
for approximately k=1. As we impose larger and larger
restrictions [cf. Fig. 2(b)] of the cones, which means a
smaller and smaller semiangle, the peak value of the dis-
tribution function P(«x) moves towards the value of « cor-
responding to the configuration of Fig. 1 (k=2). In Fig.
3(c) the first and second moments of x and V'«k? are
displayed as a function of cone semiangle.

Since the dependence on D in Eq. (14) is a simple scal-
ing of time, we can plot correlation function
K,(1)=(k(0)x(7)) as a function of 7=Dt. (The Euler
angles are omitted in « for brevity.) The correlation func-
tion K,(7) is shown in Fig. 3(a) for three semiangles
(171°, 99°, and 45°). The plateau value strongly depends

) 5 o
3 6 =126

O -

0.0 0.2 0.4

0.6 0.8 1.0

f(units of II)

FIG. 2. The probability distribution function P (k) of the orientation-dependent function « of dipole-dipole coupling is displayed
in (a) and (b) for the semiangles (a) 0< 6, < /2, 10° points; (b) 7/2< 0, <, 10’ points; (c) shows {x), {(x?), and V', denoted M1,
M2, and M2'/?, respectively.
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on the cone angle through P(k). Subtracting the long-
time value {« )? of the time correlation function and plot-
ting it in a In-linear plot, we can observe more easily
nonexponential relaxation.
In Fig. 3(b) we display the correlation function
K (Dt)—(Plateau)

* =
ki D) K ,(0)—(Plateau) (14

for different semiangles 6,. The decay of K} (7) is single
exponential for 6,=171° and 45° but multiexponentially
for the intermediate angle.

C. The numerical simulation of the stochastic Liouville
equation (8)

From Secs. III A and III B we have obtained the sto-
chastic time-dependent Liouville matrix of Egs. (9) and

e -
\9=45
oo b 0=99 i
—6@ :1710
(a)
ot |
L !

0 1 2
Dt(ns)
0
€ T
(b)
6=99°
PR
e — -
X o=171"
\\\9=45°
1
0.0 0.5 1.0

Dt(ns)

FIG. 3. The correlation functions (a) K;[¢]={«(#)|«(0)) and
() InK§ =In{K,[t]—{(x(Q)){x(Q))} are displayed for three
cone potentials defined by semiangles 6,=45°, 99°, and 171°.

(10). The next step is to solve this stochastic differential
equation. In the numerical calculations to be discussed,
the physical parameters used are summarized in Table I.
The Liouville matrix of Eq. (8) is of a special character
usually denoted as stiff since two of its eigenvalues are
very different from the other two. In Brownian dynami-
cal simulations one should avoid all types of time con-
suming operations such as, for instance, matrix inver-
sions. In order to solve Eq. (8), we use a symmetrized
version of the Trotter formula [7] as a basis for the nu-
merical algorithm. First we decompose the Liouville ma-
trix into a diagonal and an off-diagonal part,

%x(t)=—[L0+ih(t)L1]x(t), (15)
where the L matrix has a special symmetry:

0 O 1 -1
o o0 -1 1
1 -1 0 0 |’
-1 1 0 o0

(16)

where the stochastic time-dependent dipole-dipole cou-
pling is manifested in the strength constant h(z). The
short time solution of this equation system now written
with discrete time has the following form:
[Lo+ih(t,)L, At
Xi+1=e ° T an
Here, At=(t;,,—t;). The symmetrized version of the
Trotter formula [7] is given by
Lo+ih(t)]At_ LyAt/2 ih(t,)L At LyAt/2
e[on(t,]t=eorex(t,)1reot +C(At3). (18)
From Eq. (18) we obtain a finite-difference scheme of the
second order provided all matrix exponentials can be ex-

actly calculated. The calculation of the first exponential is
trivial:

—A,A72
e

0 0 0
—A,At/2
LoAt/2_ 0 e ? Y 0
e = 0 P 0
0 0 e —A4AL/2

(19)

The calculation of the second term is less trivial but can
be obtained according to the following procedure. Since
L,L,=2I, where I denotes the block diagonal matrix,

I= . (20)

We also have the following relations: II=2I and
IL,=2L,.

Thus, using the Taylor series, the exponential can be
rewritten to
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TABLE I. The physical parameters used in the model calculations.

1 1
— =1 7, __.=1014,
D 0 T,

mmp

dmegrip

=5x10',5x10"*, D=107,0.5%X10°,10"

A =B 4 T{cos[2h(1;,)At]—1) /2

+iL,{sin[2h(z,)At]} /2 . 1)

We then use Eq. (17) to calculate the value of the density
matrix elements in the column vector x(¢;,,) at time
i +1 from the value at the previous step ¢; using the ran-
dom value of h(¢;) obtained from the BD simulation of
k(Q) (Secs. IIT A and III B).

We close this section by summarizing the approach of
solving energy transfer problems between mobile pairs of
moleculers by directly simulating the stochastic Liouville
equation and using explicit trajectories of the stochastic
term of the Liouville superoperator, in the following
points:

(a) The stochastic noise due to the reorientational
motion of a chromophore is needed in the form of expli-
cit trajectories. This stochastic fluctuation has been
simulated in our particular case using a dynamic model
and Brownian dynamic simulation techniques (Appendix
A) but we could equally well have extracted the trajec-
tories from other models or from molecular dynamics
(MD) simulations.

(b) The dynamics of the chromophores induces a sto-
chastic time dependence in the intermolecular transition
dipole-dipole coupling. The relevance of the stochastic
noise is in the modulation of the dipole-dipole coupling
between the two chromphores, x(Q[t]) of Eq. (5).
This “noise” entering the Liouville equation of motion
can be characterized by its probability distribution
function P[x(Q[t])] and its correlation function
(k(Q[t])x(Q[0])) which are needed in other theoretical
approaches such as Redfiled theory or in a cumulant ex-
pansion (Sec. ITI B).

(c) The actual simulation of the stochastic Liouville
equation has some general steps: (1). The symmetry of
the dipole-dipole Liouville matrix L allows us to decom-
pose it into a finite sum of Liouville matrices with the im-
portant symmetry property LL=1I and LI=kL, and (2).
The Trotter formula is applied to the exponential opera-
tor e and, using the Taylor series, we obtained Eq. (21),
which is the main result of this paper.

IV. NUMERICAL RESULTS

In order to investigate the influence of stochastic dy-
namics and the configuration on the energy transfer rate,
we have performed a number of numerical simulations of
SLE [Eq. (9)] for different semiangles ranging from 9° to
171° and dynamics ranging from slow to fast dynamic sit-
uations. The numerical results presented in this section
all refer to the same configuration schematically shown in
Fig. 1. We have varied the semiangle of two equivalent
cones and the diffusion constant of the reorientation (D)
within the two cones, respectively. Two quantities were
determined by calculating the explicit trajectories of the

density matrix elements: The correlation function
{x1(t)lx,(25)) describes the probability that the initially
excited chromophore is still excited at a later time ¢, and
the second correlation function of interest {x,(¢)|x,(t))
describes the probability that the initially not excited
chromophore is excited at a time ¢. Since the excitation
has to be on one of the two chromophores,

<X2(t)IX1(t0)>=1_ (X](t)lxl(to))

as long as only energy transfer mechanism is dominating.
In all calculations this condition was fulfilled.

A. {(x1(8)|x1(15)) in the weak coupling regime

With the weak coupling of strong narrowing regime we
refer to the regime where ordinary time-dependent per-
turbation theory is applicable. In this regime it is (in
principle) possible to derive a generalized Forster rate
master equation where the effects of molecular reorienta-
tional dynamics has been included [2]. The numerical re-
sults of this section all refer to the configuration shown
schematically in Fig. 1. We have changed the semiangle
of the two cones and the reorientation diffusion constant
D of the two chromophores.

The In-In plot of Fig. 4(a) and the semilog plot of Fig.
4(b) show a family of correlation functions {x,()|x,(¢,))
obtained for a different cone semiangle 6, and different
values of the diffusion coefficients D, all curves showing
multiexpotential decay. The “plateau value” displayed in
Fig. 4 is apparent because of the time axes and in fact the
slow decay is due to the lifetime 1/7,. For all values of
the semiangles the diffusion constants have been chosen
to cover the “static,” intermediate, and ‘““fast” dynamic
cases. We observe power-law behavior (¢ ™) in an inter-
mediate time range. For 6,</2 the correlation func-
tion {x,(#)|x,(¢¢)) is almost independent of diffusion rate
D but is clearly influenced by the cone potential. For
larger semiangles the influence of the diffusion constant D
becomes more pronounced. Multiexpotential decay is
evidently extended to longer times as the reorientation
diffusion slows down. In the fast dynamic limit D > 10!},
the correlation functions decay for all semiangles exactly
as for an effective time-independent dipole-dipole cou-
pling H. in the (stochastic) Liouville matrix equation
(10) proportional to the root mean square value of
k(H.g <V [k?]). This means that an ordinary Forster
master equation is valid for sufficiently fast dynamics. It
was also observed that a larger semiangle of the cone po-
tential requires a larger value of D to guarantee that the
Forster master equation is valid. This is expected since
the correlation function {x[Q(0)]«[Q(z)]) decays faster
as the cone semiangle is made smaller.

In the slow dynamical regime case, D < 107k(Q) is time
independent and the only source of irregularity in the sys-
tem is due to initial conditions. This case is very similar
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to energy transfer in a system of orientationally disor-
dered chromphores characterized by P (x[Q]) (cf. Figs. 2
and 3). Figure 5(a) demonstrates the onset of a single ex-
ponential asymptotic behavior for the correlation func-
tion (x,(#)|x;(t,)). In Fig. 5(b) we have subtracted the
exponential tail from all curves in order to investigate the
net contributions to relaxation. The correlation functions
are single exponential for high reorientational diffusion
coefficients and for slow reorientational diffusion they are
clearly multiexpontential. We continued the process of
subtraction of the exponential tail and obtained five or six
exponentials for the slow diffusion curves (D =10'°).

B. {x:1(t)|x:(to)) in the strong coupled regime

For smaller intermolecular distances the dipole-dipole
coupling may be in the “strong” coupling or slow-motion

(x,(t)x,(0))

(x, (1%, (0))

(b)

0.5 1.0

time (ns)

FIG. 4. The correlation function {y,(t)|y,(¢,)) is displayed
as a function of time (a) in a In[¢]-ln plot and (b) in a semilog
plot for two cone angles (99°, 171°) and three diffusion
coefficients (D =107, 5.10°, 107).

€ T
-1
e —
-2
e -
-3
e —
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X s
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-7
e —
-8
e \ —
\
-9 0¥a5° N\ D=10"
e At ) . |
0.0 0.5 1.0
time(ns)
FIG. 5. The correlation function In{{y,(¢)lx,(z,))

—{x17{x,?} obtained from 10° trajectories is displayed as a
function of time for the same cone angles and diffusion
coefficients as in Fig. 4.

regime, that is, V' ([HPP]?) /6D >1. The master equa-
tion approach using the Forster rate W is not valid [2].

A theoretical framework capable of treating energy
transfer in the strong coupling regime is the SLE ap-
proach. However, a complication not treated explicitly
in this paper is that for real applications and very fast en-
ergy transfer, the Liouville matrix must be extended to
include a number of vibrational level of each chromo-
phore and with explicit vibration relaxation rate con-
stants. This generalization is in one sense straightfor-
ward; however, it will lead to a much larger Liouville ma-
trix. If we still assume that the orientational dependence
of the dipole-dipole coupling is independent of vibration-
al levels or known explicitly, we may use this approach.
The principle ideas of our algorithm are still applicable
since the new Liouville matrix may be decomposed into
matrices with the symmetry properties required by our
algorithm [Egs. (17)-(21)].

In this section we present some results to illustrate the
behavior of the correlation function {x,(#)|x,(¢,)) under
strong coupling conditions without including vibrational
relaxation processes. The main difference between the
weak and the strong coupled cases is the oscillating
behavior of (y,(#)|x,(t,)) shown in Fig. 6 (excitation
quanta jumps back and forth between chromophores be-
fore equilibrium distribution between two molecules is
obtained). The relaxation is strongly dependent on cone
angles but shows very weak dependence on the diffusion
coefficient D.

C. The fluorescence anisotropy

The fluorescence emission anisotropy is frequently
studied and is defined as

_ Izz()=1I4(2)

r(t) ()

) (22)
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(x,(t)x,(0))

0.0 L

0.00 0.05 0.10
time (ps)

FIG. 6. The correlation function (y,(t)|x,(¢,)) obtained
from 10° trajectories is shown in the strong coupled case.

where I1(2) is the total fluorescence intensity. I,(¢) and
I,y(t) denote the intensity of the observed light with the
excitation pulse polarized along the z axis and with polar-
izator in the z and y directions, respectively. Following
the elucidating paper by Szabo [8] the fluorescence an-
isotropy may be related to a correlation function (Appen-
dix B):

The pair of photoactive chromphores may be embed-
ded at different distances in the macromolecular struc-
ture. At their positions in the macromolecule the chro-
mophores are allowed to reorient in a restricted fashion
described by the “wobbling in a cone model.” We intro-
duce a frame (P) fixed in the chromophore and a second
(M) fixed in the macromolecule; the wobbling in a cone
dynamic is described by the Euler angles () p,,:

(d3[Brp()]d3[BLp(ty)])
=S e RUDL [Qpy (11D [Qpylto)] -

(24)

The time-resolved fluorescence in their donor-donor case
is given by the correlation functions

(D}, (U ]D3, [2(25)])

=3 (Xi(0x;(t0)D 3 [2(D]1DG,, [Q;(20)]) /2 .
¥
(25)

In Fig. 7(a) the fluorescence anisotropy r(t) given by the
correlation function of Eq. (25) is displayed for several
different cases of wobbling dynamics and cone potentials.
The overall reorientational diffusion is assumed ot be
slow, exp(z /7g )=1. The influence of the cone potential

is most evident in determining the long-time limit value
of r(t). In Fig. 7(b), r(2) is displayed for a slow-motion
case where the oscillation behavior is revealed. The
long-time limit value is drastically changed for the same
semiangles 90°, 72°, and 54°.

V. CONCLUSIONS

In this work we have developed an algorithm to solve
the stochastic Liouville equation of motion describing en-
ergy transfer between two mobile chromophores. The
approach developed requires that the molecular motions
have been determined explicitly, for instance, from
Brownian dynamics or molecular dynamics simulation
techniques. We used the cone model and the Brownian

€ T T T i
g=18°
o i
-1 8=36 |
e 8!
\ ]
—~ =2 \\ 6 =54°
Ze T H \ ,
~
\ (a)
3L 6 =72 B
N~

o

o
.
-

time (10fs)

FIG. 7. The fluorescence anisotropy r(¢) obtained from 10°
trajectories is displayed for different cone potentials and
D =10% (a) for the weak coupled case {1/t,=10% 1/T,=10",
1 4iip /[4megr3]1=5% 10"}, and (b) for a strong coupled case;
the parameters are as in Table 1.
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dynamics simulation technique to determine the fluctuat-
ing dipole-dipole coupling in the stochastic Liouville ma-
trix. The probability distribution function for the fluc-
tuating term «(£2[¢]) in the dipole-dipole coupling shows
non-Gaussian shape for all semiangles 6,. This informa-
tion is important if one wants to develop dynamical mod-
els using Forster’s maser equation where the fluctuating
Forster rate is proportional to x2. The algorithm was ap-
plied to solve the SLE with different wobbling dynamics,
thus illustrating dynamic effects in the correlation func-
tion {x,(¢)[x;(¢y)) and in r(¢), the fluorescence anisotro-
py. Calculations were performed in both the weak
(Forster) regime and in the so-called slow-motion regime.
In calculating the fluorescence anisotropy, the electronic
energy transfer and the wobbling dynamics in the core
are not assumed to be uncoupled.
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APPENDIX A

In this appendix we review the Cartesian algorithm
used in the simulation of reorientation of a chromophore
in a cone potential [6]. The Langevin equations corre-
sponding to isotropic reorientational diffusion are

d6=D cot(8)dt+V'D dW, ,
dw,

sin%0

(A1)
d¢=vD

b

where W, and W are standard Winer processes. These
Langevin equations are not very suitable for numerical
simulations due to the singularity in the sin’[8]. To
avoid the problem of a singularity, we embedded the
diffusion equation in the three-dimensional Cartesian
space:

d
Ep(x,y,z,tlxo,yo,ZO)=Ax,y,zp(x,y,z,t|xO,yo,Zo) .

(A2)

In spherical coordinates the diffusion equation of (A2)
reads

aP(r, 0’¢yt|r0’90’¢0)
ot

_ 1
=D {T(Z;_A"o%_'_A'o lP(r,0,¢,t|r0,00,¢o) ,  (A3)

where P(7,0,,t|ry,0,,¢,) is the conditional probability
density and the radial part of the Laplacian operator is
denoted A,,

19 |.8
A 3 r 3

d
r r or (A4)

Equation (A2) is equivalent to Eq. (11), when we add the
boundary condition

_a_P(r,B,qS,t|r0,00,¢0)|,0=1=0 ,

ary (AS)

which must be fulfilled at every time step. This boundary
condition means that the radial probability flux across
the boundary should be zero. Under these conditions we
may simulate the Langevin equations

dx=V'D dw,_ ,
dy=Vv'D dw, , (A6)
dz=V'D dW, ,

which are extremely simple and without a singularity.
The important and elaborate part of the algorithm is the
realization of the two reflecting boundary conditions (AS5)
and (12).

The numerical version of the Langevin equations (A6)
is in the form

x{4=x;+V2Dh§, ,
Yi+1=y;+V2Dh Sy »
Zil+l =z; +‘/2Dh gz 5

(A7)

where (x;,y;,2;) are the initial Cartesian coordinates of a
unit vector in the cone describing the orientation of one
of the chromophores at time step i and (x; 4 ,¥{ 1,2/ +1)
represent the position somewhere in the three-
dimensional Cartesian space after time step i +1. h
represents the time step and §; are (i =x,y,z) the Gauss-
ian random numbers.

Numerical realization of additional boundary condi-
tions (A5) [shown in Fig. 8(a)] is very simple since we can
use geometrical properties of a sphere. It consists in re-
normalization of coordinates {x/,,,¥/+1,2/+1} to a new
position at time i + 1 obtained through

’
X = Xi+1
i1
2 ”2 ”
\/xi+1+yn‘+1+zi+1
’
Yi+1
L= (A8)
Yi+1 s
Xit1TYVi+1TZi+1
’
Zi+1

Ziy1—
”2 ”2 2
‘/xi+1 Ty Tzt

We know [9,10] that to satisfy the boundary conditions
(12) (called “reflective”), one needs to reflect a trajectory
according to their law “the angle of rejection is equal to
the angle of incidence.” In Fig. 8(b) a kind of complica-
tion is shown that may happen because of simulation
with finite step length, namely, that the increment is so
large that after the first reflection that the position vector
after the renormalization r}/|r}| is still outside the cone.
We then proceed to find its crossing point in the cone
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FIG. 8. (a) The renormalization procedure is schematically
shown where P; represents the position at time step 1. P, is the
position after renormalization. In (b) the reflecting procedure
on the spherical part of the cone is illustrated where r_, is the
first crossing point at the cone boundary and n,, is the normal
at this point. r} is the position after the first random step, thus
leaving the cone volume. r} refers to the position after
reflection of this step, however still outside the cone volume.
This step crosses the cone boundary at r.,. Then we again apply
the reflecting procedure in order to force the step into the cone
volume having the position ri. If the normalized vector r}/|r}]
is on the cone, it is accepted. The planes indicated in (b)
represent the tangent planes at the crossing points.

boundary n., and a new normal at this point denoted n_,
is defined. The trajectory is reflected a second time from
the tangent plane to r3. If this new vector position after
renormalization rj/|r}| is within the cone surface, this
position is accepted as the next step and

r§/|r§| = lri+l|=|(xi+1’yi+l’zi+l)l
with |[r' T![=1.

APPENDIX B

In this appendix we given the relation between the
correlation function calculated and the fluorescence an-
isotropy r(t) following the paper of Szabo [8]:

_ Izz(t _to)_Izy(t ‘_to)
IT(t —to)

) (B1)

where I(2) is the total fluorescence intensity. I,,(¢) and
I,y(t) denote the intensity of the observed light with ex-
citation pulse polarized along the z axis and with polari-
zators in the z and y directions, respectively.

The probability P ,(¢,) that the probe molecule that is
excited at ¢ is proportional to the square of the projec-
tion of the transition dipole moment in the direction of
the polarized excitation light used u{l(z,)=cos[Bp].
This direction defines the z axis of the laboratory frame
and in the following we use normalized transition dipole
moment vectors in the spherical irreducible vector nota-
tion. The probability P ,(z,) is

P, (ty)=1{1+2d% [B.p(ty)]} . (B2)

The probability that the system of probe molecules emits
light at a later time ¢ with the polarization along the z
and y axes of the laboratory frame, respectively, is

Pe(t)L{1+2d%[B(D]} , (B3)

PE()=1—1d3[B1)]—V/ F{d3[B1]+d25[B(N]] .
(B4)

Using Egs. (A1)-(A4), we may formulate an expression

for the fluorescence anisotropy in terms of the ensemble

averaged probabilities. The fluorescence anisotropy may
now be written in terms of autocorrelation functions:

(Pg(t)P 4(t5)) =1+ 2(d3[B(1)]d % [B(1y)) | (BS5)
(PP 4(19)) =1 —2(d3,[B(1)]1d3[B(2)]) - (B6)
This gives the result of this section:

r(t —t)=2(d3[B(1)1d3,[B(ts)]) /I (t —1,) . (B7)

We introduce a principal frame (P) with its z axis defined
by the direction of the transition dipole moment of the
photoactive chromophore. Then in order to describe the
intramolecular molecular motion of the chromophores,
we introduce a molecular fixed frame with its z axis
defined by the intermolecular distance vector r connect-
ing the two chromophores attached in the macro-
molecule. Finally we have the laboratory fixed frame
with its z axis defined by the direction of the polarizing
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excitation light.

We may now relate the components of the emission di-
pole vector projected along the z'L) axis. The transfor-
mations are described by Wigner rotation matrix ele-
ments:

d%[Brp()]= 3 D3, [Qpp(t)1D2o[Qpr ()] . (BY)

Using Eq. (32), the correlation function of Eq. (31) may

be determined. We assume that the overall reorientation
of the macromolecule is an isotropic diffusion motion and
obtain the time-resolved fluorescence anisotropy in terms
of the molecular reorientational correlation functions:

(d%[BLp(01d % [BLp(ty)])

=Se RUDE, [Qpy (1D, [Qppgto)] . (BI)
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